Improved bounds on the Hadwiger-Debrunner numbers

نویسندگان

  • Shakhar Smorodinsky
  • Gábor Tardos
چکیده

We prove that any family of compact convex sets in R which satisfy the (p, q)-property (p ≥ q ≥ d+1) can be pierced with Õ((pq) q−1 q−d ) points for d ≥ 3 and O((pq) q−1 q−2 ) for d = 2. This improves (already for d = 2 and q = 3) the previously best known bound (of Õ(p 2+d)) provided in Alon and Kleitman’s celebrated proof of the Hadwiger Debrunner conjecture (for the case q = d+ 1). We also prove a (p, 2)-Theorem for families with sub-quadratic union complexity in R. Based on this, we also introduce a polynomial time constant factor approximation algorithm for MAX-CLIQUE of intersection graphs of convex sets with sub-quadratic union complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A purely combinatorial proof of the Hadwiger Debrunner (p, q) Conjecture

Abstract A family of sets has the (p, q) property if among any p members of the family some q have a nonempty intersection. The authors have proved that for every p ≥ q ≥ d+ 1 there is a c = c(p, q, d) < ∞ such that for every family F of compact, convex sets in R which has the (p, q) property there is a set of at most c points in R that intersects each member of F , thus settling an old problem...

متن کامل

A Purely Combinatorial Proof of the Hadwiger Debrunner

A family of sets has the (p; q) property if among any p members of the family some q have a nonempty intersection. The authors have proved that for every p q d + 1 there is a c = c(p; q; d) < 1 such that for every family F of compact, convex sets in R d which has the (p; q) property there is a set of at most c points in R d that intersects each member of F, thus settling an old problem of Hadwi...

متن کامل

Piercing convex sets and the Hadwiger Debrunner (p, q)-problem

A family of sets has the (p, q) property if among any p members of the family some q have a nonempty intersection. It is shown that for every p ≥ q ≥ d + 1 there is a c = c(p, q, d) < ∞ such that for every family F of compact, convex sets in R which has the (p, q) property there is a set of at most c points in R that intersects each member of F . This settles an old problem of Hadwiger and Debr...

متن کامل

A variant of the Hadwiger-Debrunner (p, q)-problem in the plane

Let X be a convex curve in the plane (say, the unit circle), and let S be a family of planar convex bodies, such that every two of them meet at a point of X. Then S has a transversal N ⊂ R of size at most 1.75 · 10. Suppose instead that S only satisfies the following “(p, 2)-condition”: Among every p elements of S there are two that meet at a common point of X. Then S has a transversal of size ...

متن کامل

Sphere packings revisited

In this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015